skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yamada, KayLene"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The ability for traits to recover after exposure to stress varies depending on the magnitude, duration, or type of stressor. One such stressor is circadian rhythm disruption stemming from exposure to light at night. Circadian rhythm disruption may lead to long-term physiological consequences; however, the capacity in which individuals recover and display stress resilience is not known. Here, we exposed zebra finches (Taeniopygia castanotis) to constant light (24L:0D) or a regular light/dark cycle (14L:10D) for 23 days, followed by a recovery period for 12 days. We measured body mass, corticosterone, and glucose levels at multiple timepoints, and relative protein expression of glucocorticoid receptors at euthanasia. Body mass significantly increased over time in light-exposed birds compared to controls, but a 12-day recovery period reversed this increase. Baseline levels of circulating glucose decreased in light-exposed birds compared to controls, but returned to pretreatment levels after the 12-day recovery period. In contrast, the glucose stress response did not show a similar recovery trend, suggesting longer recovery is needed or that this is a persistent effect in light-exposed birds. Surprisingly, we did not detect any differences in baseline corticosterone or reactivity of the hypothalamic-pituitiary-adrenal (HPA) axis between groups throughout the experiment. Moreover, we did not detect differences between relative protein expression of glucocorticoid receptors or a relationship with HPA axis reactivity. Yet, we found a positive relationship between glucocorticoid receptors and the glucose stress response, but only in the light group. Our results indicate that physiological and morphological traits differ in their ability to recover in response to constant light and warrants further investigation on the mechanisms driving stress resilience under a disrupted circadian rhythm. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. ABSTRACT Considerable progress has been made in understanding the physiological basis for variation in the life‐history patterns of animals, particularly with regard to the roles of oxidative stress and hormonal regulation. However, an underappreciated and understudied area that could play a role in mediating inter‐ and intraspecific variation of life history is endoplasmic reticulum (ER) stress, and the resulting unfolded protein response (UPRER). ER stress response and the UPRERmaintain proteostasis in cells by reducing the intracellular load of secretory proteins and enhancing protein folding capacity or initiating apoptosis in cells that cannot recover. Proper modulation of the ER stress response and execution of the UPRERallow animals to respond to intracellular and extracellular stressors and adapt to constantly changing environments. ER stress responses are heritable and there is considerable individual variation in UPRERphenotype in animals, suggesting that ER stress and UPRERphenotype can be subjected to natural selection. The variation in UPRERphenotype presumably reflects the way animals respond to ER stress and environmental challenges. Most of what we know about ER stress and the UPRERin animals has either come from biomedical studies using cell culture or from experiments involving conventional laboratory or agriculturally important models that exhibit limited genetic diversity. Furthermore, these studies involve the assessment of experimentally induced qualitative changes in gene expression as opposed to the quantitative variations that occur in naturally existing populations. Almost all of these studies were conducted in controlled settings that are often quite different from the conditions animals experience in nature. Herein, we review studies that investigated ER stress and the UPRERin relation to key life‐history traits including growth and development, reproduction, bioenergetics and physical performance, and ageing and senescence. We then ask if these studies can inform us about the role of ER stress and the UPRERin mediating the aforementioned life‐history traits in free‐living animals. We propose that there is a need to conduct experiments pertaining to ER stress and the UPRERin ecologically relevant settings, to characterize variation in ER stress and the UPRERin free‐living animals, and to relate the observed variation to key life‐history traits. We urge others to integrate multiple physiological systems and investigate how interactions between ER stress and oxidative stress shape life‐history trade‐offs in free‐living animals. 
    more » « less
  3. Abstract Little is known about the tolerances of mammalian herbivores to plant specialized metabolites across landscapes.We investigated the tolerances of two species of herbivorous woodrats,Neotoma lepida(desert woodrat) andNeotoma bryanti(Bryant's woodrat) to creosote bushLarrea tridentata, a widely distributed shrub with a highly toxic resin. Woodrats were sampled from 13 locations both with and without creosote bush across a 900 km transect in the US southwest. We tested whether these woodrat populations consume creosote bush using plant metabarcoding of faeces and quantified their tolerance to creosote bush through feeding trials using chow amended with creosote resin.Toxin tolerance was analysed in the context of population structure across collection sites with microsatellite analyses. Genetic differentiation among woodrats collected from different locations was minimal within either species. Tolerance differed substantially between the two species, withN. lepidapersisting 20% longer thanN. bryantiin feeding trials with creosote resin. Furthermore, in both species, tolerance to creosote resin was similar among woodrats near or within creosote bush habitat. In both species, woodrats collected >25 km from creosote had markedly lower tolerances to creosote resin compared to animals from within the range of creosote bush.The results imply that mammalian herbivores are adapted to the specialized metabolites of plants in their diet, and that this tolerance can extend several kilometres outside of the range of dietary items. That is, direct ecological exposure to the specialized chemistry of particular plant species is not a prerequisite for tolerance to these compounds. These findings lay the groundwork for additional studies to investigate the genetic mechanisms underlying toxin tolerance and to identify how these mechanisms are maintained across landscape‐level scales in mammalian herbivores. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less